The Impact of Exhaust Recirculation & Oxygen Enrichment on Gas Turbine Power Plants

Dr. Jeffrey N. Phillips Jphillips@fernengineering.com

Outline

- Motivation for Study
- Some Gas Turbine Basics
- Modeling Results
 - Air-blown systems
 - Oxygen-enriched systems
- Conclusions

Motivation

- There has been a lot of investigation into the concepts of exhaust recirculation and O2 enrichment to increase the CO2 concentration of GT exhaust
- None of these investigations have focused in detail on how this will impact the performance of an existing gas turbine

Simplified Cycle Diagram

Westinghouse 501F (180 MW) Compressor · Variable inlet guide vanes · Compressor blade rings · 16 stage axial-flow compressor **Turbine** 4 turbine stages · Single row 1 vanes **Combustion System** · Advanced cooling des · Multi-fuel capability · Corrosion resistant coa · Advanced cooling • 16 low NO_X hybrid combustors

Typical Combustor Design

Simplified Cooling Air Flow Path

Rolls Royce Avon

Impact of H2O on Parts Life

Compressor "Map" With Surge Line

Compressor Parameters

Corrected air flow is defined as: $W_{corr} = W_{meas} \sqrt{\theta}/\delta$

And corrected speed is defined is:
$$= N_{meas} / \sqrt{\theta}$$

$$\theta = \frac{T_{Inlet-meas}}{T_{Inlet-rated}} \frac{MW_{rated}}{MW_{meas}}$$

and
$$\delta = \frac{P_{Inlet-meas}}{P_{Inlet-rated}}$$

What happens as you recycle CO2?

$$\theta = \frac{T_{Inlet-meas}}{T_{Inlet-rated}} \frac{MW_{rated}}{MW_{meas}}$$

- Mole Wt of CO2 is 44, which is much higher than ambient air (circa 29).
- Theta decreases unless inlet temperature increases to compensate
- Alternatively, more H2O (mole wt = 18) could be recycled also to maintain mole wt of exhaust near 29

GateCycle Model Diagram

FERN ENGINEERING EXPERTS IN TURBOMACHINERY

Air-Blown Recycle Results

Impact of Exhaust Recycle on Air-Blown GT

Impact of Exhaust Recycle on Air-Blown GT

Exhaust Recycle Impact on Air-Blown Cycle

O2-Blown Recycle Results

Impact of Exhaust Recycle on O2-Blown GT

O2 Enriched Combined Cycle

Oxygen Enriched Combined Cycle

Impact on Steam Turbine

Conclusions – Air-Blown Cycle

- Recycling the exhaust of an air-blown combined cycle has a negative impact on both net power output and thermal efficiency
- 52.5% is the maximum fraction of the exhaust which can be recycled
- CO2 volume fraction increases from 4.0% to 8.6%

Conclusions – O2-Blown Cycle

- Direct substitution of 99% O2 for air (no exhaust recycle) results in:
 - Small increase in net plant power (excluding power required to produce the O2)
 - 1.7% decrease in thermal efficiency
 - No increase in exhaust CO2 concentration

Conclusions – O2-Blown Cycle

- Recycling exhaust has following impact:
 - Maximum fraction of exhaust which can be recycled is approximately 0.875
 - CO2 exhaust concentration exceeds 40vol%
 - Net plant power decreases until recycle fraction exceeds 0.7; at 0.875 it exceeds base case by 3 MW
 - Impact on thermal efficiency is slightly positive
 - Output of steam turbine increases substantially and gas turbine power decreases

Conclusions

- High concentrations of CO2 in the exhaust of a combined cycle can only be achieved by using Oxygen in place of air
- However, such a change will significantly impact the thermodynamics of a combined cycle and require the replacement of the steam turbine generator with a larger unit

